\begin{tabbing} prior{-}$f${-}fixedpoints($e$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if $f$($e$) = $e$\+ \\[0ex]then if $e$ $\in_{b}$ prior(${\it Sys}$) then prior{-}$f${-}fixedpoints(prior(${\it Sys}$)($e$)) @ [$e$] else [$e$] fi \\[0ex]else prior{-}$f${-}fixedpoints($f$$\ast\ast$($e$)) \\[0ex]fi \\[0ex] \-\\[0ex]{\em clarification:} \\[0ex] \\[0ex]es{-}prior{-}fixedpoints\=\{i:l\}\+ \\[0ex](${\it es}$; ${\it Sys}$; $f$; $e$) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if es{-}eq{-}E(${\it es}$; ($f$($e$)); $e$)\+ \\[0ex]then \=if $e$ $\in_{b}$ es{-}prior{-}interface\{i:l\}(${\it es}$; ${\it Sys}$)\+ \\[0ex]then \=es{-}prior{-}fixedpoints\=\{i:l\}\+\+ \\[0ex](${\it es}$; ${\it Sys}$; $f$; es{-}prior{-}interface\{i:l\}(${\it es}$; ${\it Sys}$)($e$)) \-\\[0ex]@ [$e$ / []] \-\\[0ex]else [$e$ / []] \\[0ex]fi \-\\[0ex]else es{-}prior{-}fixedpoints\=\{i:l\}\+ \\[0ex](${\it es}$; ${\it Sys}$; $f$; es{-}fix(${\it es}$;$f$;$e$)) \-\\[0ex]fi \-\\[0ex]\emph{(recursive)} \end{tabbing}